Targeted nanocomplex carrying siRNA against MALAT1 sensitizes glioblastoma to temozolomide
نویسندگان
چکیده
Intrinsic therapeutic resistance especially in cancer stem cells (CSCs) together with extensive tumor cell infiltration and restricted permeation of the blood-brain barrier (BBB) by drugs may all contribute to the treatment failure in patients with glioblastoma multiforme (GBM). Accumulating evidence suggests that long non-coding RNA (lncRNA), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays a role in tumor cell infiltration and therapeutic resistance of GBM. Using our tumor-targeted nanocomplex, we have modulated the expression of MALAT1 and investigated its impact on GBM cells. Importantly, our nanocomplex is able to target CSCs that are considered to be the prime culprits in therapeutic resistance and recurrence of GBM. Attenuation of MALAT1 by RNA interference significantly lowered the growth, motility and stemness of GBM cells. In addition, silencing of MALAT1 clearly improved the sensitivity of GBM cells to chemotherapeutic agents including the current first-line therapy of GBM [temozolomide (TMZ)]. In animal models of GBM, tumor involution with a modest but statistically significant survival benefit was achieved with concurrent treatment of TMZ and nanocomplex-mediated silencing of MALAT1. These results suggest that combining standard TMZ treatment with lncRNA-targeting therapies using our nanocomplex could substantially enhance the very poor prognosis for GBM patients.
منابع مشابه
A Nanoparticle Carrying the p53 Gene Targets Tumors Including Cancer Stem Cells, Sensitizes Glioblastoma to Chemotherapy and Improves Survival
Temozolomide (TMZ)-resistance in glioblastoma multiforme (GBM) has been linked to upregulation of O(6)-methylguanine-DNA methyltransferase (MGMT). Wild-type (wt) p53 was previously shown to down-modulate MGMT. However, p53 therapy for GBM is limited by lack of efficient delivery across the blood brain barrier (BBB). We have developed a systemic nanodelivery platform (scL) for tumor-specific tar...
متن کاملO26: Targeted Delivery of siRNA in a Nano-Particle Suppress Glioblastoma Stem Cells
Cancer stem cells (CSCs) are suggested as the most dominant causes of recurrence due to their permanent self-renewal and resistance to common cancer treatment in glioblastoma multiform (GBM) which is recognized as the most malignant of brain tumor. It has been indicated that Retinoblastoma-binding protein 5 (RBBP5), a main part of Mixed lineage leukemia protein-1 (MLL1), plays a significant rol...
متن کاملMALAT1 is a prognostic factor in glioblastoma multiforme and induces chemoresistance to temozolomide through suppressing miR-203 and promoting thymidylate synthase expression
Glioblastoma multiforme (GBM) is the most malignant brain tumor with limited therapeutic options. Temozolomide (TMZ) is a novel cytotoxic agent used as first-line chemotherapy for GBM, however, some individual cells can't be isolated for surgical resection and show treatment-resistance, thus inducing poor prognosis. By using the HiSeq sequencing and bioinformatics methods, we identified lncRNAs...
متن کاملResveratrol sensitizes glioblastoma-initiating cells to temozolomide by inducing cell apoptosis and promoting differentiation.
Glioblastoma-initiating cells play crucial roles in the origin, growth, and recurrence of glioblastoma multiforme. The elimination of glioblastoma-initiating cells is believed to be a key strategy for achieving long-term survival of glioblastoma patients due to the highly resistant property of glioblastoma-initiating cells to temozolomide. Resveratrol, a naturally occurring polyphenol, has been...
متن کاملTargeting miR-381-NEFL axis sensitizes glioblastoma cells to temozolomide by regulating stemness factors and multidrug resistance factors
MicroRNA-381 (miR-381) is a highly expressed onco-miRNA that is involved in malignant progression and has been suggested to be a good target for glioblastoma multiforme (GBM) therapy. In this study, we employed two-dimensional fluorescence differential gel electrophoresis (2-D DIGE) and MALDI-TOF/TOF-MS/MS to identify 27 differentially expressed proteins, including the significantly upregulated...
متن کامل